
CISC101 Reminders & Notes

• Assignment 2 grades are posted in Moodle

• Test 2 is marked
– Grades will be posted in Moodle
– Tests will be handed back in tutorial this week

Slides courtesy of Dr. Alan McLeod

• Assignment 3 is now posted
– Due on Sunday, March 20th

• May have a guest lecture ...
– Notes will not be posted on the website
– Related questions will be on the exam

Winter 2011 CISC101 - Whittaker 1

Today

• Cover material on exceptions from last lecture
– Slides 52-60

• Continue with exceptions

• Strings
– What we already know

Slides courtesy of Dr. Alan McLeod

– What we already know
– Keywords and BIFs
– Methods (lots of them!)
– Demos

• Basic file input and output

Winter 2011 CISC101 - Whittaker 2

None – What is it and Why is it Useful?

• None is a built-in constant
– Indicates the absence of a value (i.e., nothing)

• None is not zero
– Zero is a number, None is not

• Use it when you need a value but don’t have one

Slides courtesy of Dr. Alan McLeod

• Use it when you need a value but don’t have one
– Return it if you can’t return something meaningful
– Use it to create a variable for which you have no value
– Use it for default arguments for which there are no

sensible values to assign

• You can test to see if something equals None in a
boolean expression

Winter 2011 CISC101 - Whittaker 3

Demo: Robust Input Between Limits

• Modify getInt(…) from MoreRobust.py
– Can supply limits for the integer number

• What if you don’t want to use one or both limits?
– Use default arguments!

• What would be a good default limit?

Slides courtesy of Dr. Alan McLeod

• What would be a good default limit?
– We don’t want to assign an inappropriate limit …
– Solution: use None !

• Demo: MoreRobustRange.py

Winter 2011 CISC101 - Whittaker 4

Raising Exceptions

• What do you do when your function cannot do its
job?

• You could return something so the invoking
function knows that there is a problem

Slides courtesy of Dr. Alan McLeod

• Or, you could raise an exception
– This is better in many situations

Winter 2011 CISC101 - Whittaker 5

Raising Exceptions - Cont.

• You can raise (or “throw”) an exception by using
the raise keyword

raise exception_name

Slides courtesy of Dr. Alan McLeod

• If you want to supply a “reason” as well,

raise exception_name (reason_string)

Winter 2011 CISC101 - Whittaker 6

Raising Exceptions - Cont.

• This is just like creating an error condition, but in
an artificial way …

• Demo: RaiseException.py

Slides courtesy of Dr. Alan McLeod

• Demo: RaiseExceptionWithMessage.py

Winter 2011 CISC101 - Whittaker 7

Raising Exceptions - Cont.

• Whenever you raise an exception, the function
that raised the exception is halted
– No other code in the function will execute

• If the function call was part of an expression then
the rest of the expression will not be evaluated

Slides courtesy of Dr. Alan McLeod

the rest of the expression will not be evaluated

• As you know – if the exception is not caught, you
will see the nasty red stuff!

Winter 2011 CISC101 - Whittaker 8

Raising Exceptions - Cont.

• It is easiest to just raise one of the existing
exceptions

• If it is because of a parameter error then
ValueError is appropriate

Slides courtesy of Dr. Alan McLeod

• Creating our own exception objects is beyond the
scope of this course

Winter 2011 CISC101 - Whittaker 9

Strings

• String manipulation is a frequent activity in any
programming language
– Speech analysis
– Text searching and indexing
– Spell and grammar checkers
– Program (code) interpretation

Slides courtesy of Dr. Alan McLeod

– Program (code) interpretation
– Scanning emails for SPAM
– … and more

• A string is a kind of data structure
– Like a tuple, but they have lots of methods

• Tuples have very few methods

Winter 2011 CISC101 - Whittaker 10

Strings Thus Far

• String literals
"Hello there! “

‘CISC 101‘

"""Multiline

string"""

• You can store a string in a variable

Slides courtesy of Dr. Alan McLeod

• You can store a string in a variable
– Just like anything else

• They are of type str

• str(…) is a BIF
– Returns a string version of the given argument

Winter 2011 CISC101 - Whittaker 11

Strings Thus Far – Cont.

• input(…) is a BIF
– Returns user input from the keyboard as a string

• You can use escape sequences
– \ n, \ ” , \ ’ , \ \ , \ t

Slides courtesy of Dr. Alan McLeod

– \ n \ ” \ ’ \ \ \ t

– These control how a string is displayed

• The string format() method is useful to format
numeric output for display

Winter 2011 CISC101 - Whittaker 12

Strings Thus Far – Cont.

• You can concatenate strings using +

• You can generate repeating strings using *

• You can compare strings
– Use ==, >, <, >=, <= and !=

– Just like comparing numbers, but you must have a

Slides courtesy of Dr. Alan McLeod

– Just like comparing numbers, but you must have a
string on both sides of the operator

– Strings are compared on the basis of the ASCII code
values for their individual characters

• They are a type of collection
– A collection a characters

Winter 2011 CISC101 - Whittaker 13

Strings And Collections - Similarities

• Many collection “accessories” work with strings
– The slice operator [:]
– in and not in

• A string must be placed on both sides

– for loops
– len (…) BIF

Slides courtesy of Dr. Alan McLeod

– len (…)

– list(…) and tuple(…) BIFs
• Create a list or a tuple with the individual characters

– sorted() BIF
• Returns a sorted list of individual characters

– reversed() and enumerate(…) BIFs

• Demo: StringsAsCollections.py

Winter 2011 CISC101 - Whittaker 14

Strings And Collections - Differences

• Strings are immutable
– Cannot put the slice operator on the left side of the

assignment operator
– del does not work

• Tuples only have two methods

Slides courtesy of Dr. Alan McLeod

• Tuples only have two methods
– count(…) and index(…)

– Strings have many methods …

Winter 2011 CISC101 - Whittaker 15

Other String BIFs – Unicode and ASCII

• chr(…)

– Takes an integer argument (a Unicode value)
• For the “narrow build” of Python that we use, this number can

range from 0x0000 to 0xFFFF
– 2 bytes, compared to ASCII’s 1 byte
– But ASCII values still work!

– Returns the corresponding character

Slides courtesy of Dr. Alan McLeod

– Returns the corresponding character

• ord(…) does the reverse of chr(…)

– Takes a single character as a string for the argument
– Returns the character’s code value

• Demo: ASCIITable.py

Winter 2011 CISC101 - Whittaker 16

ASCII Characters - Observations

• The empty boxes are non-printing characters
– They do something like <enter> or or <\n>, etc.

• Some characters seem to have a <backspace>
built in …

• ASCII 32 is a space

Slides courtesy of Dr. Alan McLeod

• ASCII 10 must be an <enter> (or “newline”)
• Keyboard characters stop at ASCII 127
• Characters from ASCII 128 to 254 are called

“extended characters”
– Not all of them are available in the console window

Winter 2011 CISC101 - Whittaker 17

Unicode Characters

• Demo: UnicodeTable.py
– Unicode numeric values are not displayed and only a

fraction of the table is printed out
– Most empty boxes represent un-assigned Unicode

values
• They really are empty

Slides courtesy of Dr. Alan McLeod

• They really are empty

• Demo: UnicodeBox.py

Winter 2011 CISC101 - Whittaker 18

Character Codes for Escape Characters

• Demo: EscapeCharacters.py
– Uses the ord(…) BIF

• You now know that you could use the chr(…) BIF
to generate these escape sequences …

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 19

String Methods

• Just like a list, a string has many methods
– 35 of them (a subset) are listed here

• The next 3 slides list the methods in alphabetical
order
– There is no other description

Slides courtesy of Dr. Alan McLeod

– There is no other description
– Note the use of default arguments

• Remember that they are invoked as follows:

string_variable. method_name()

Winter 2011 CISC101 - Whittaker 20

aString .capitalize()

aString .center(width)

aString .count(str , beg=0, end=len(aString))

aString .endswith(obj , beg=0, end=len(aString))

aString .expandtabs(tabsize =8)

aString .find(str , beg=0, end=len(aString))

aString .format (args)

Slides courtesy of Dr. Alan McLeod

aString .format (args)

aString .index(str , beg=0, end=len(aString))

aString .isalnum()

aString .isalpha()

aString .isdigit()

aString .islower()

Winter 2011 CISC101 - Whittaker 21

aString .isspace()

aString .istitle()

aString .isupper()

aString .join(seq)

aString .ljust(width)

aString .lower()

aString .lstrip ()

Slides courtesy of Dr. Alan McLeod

aString .lstrip ()

aString .partition(str)

aString .replace(str1 , str2 , num=aString .count(s tr1))

aString .rfind(str , beg=0, end=len(aString))

aString .rindex(str , beg=0, end=len(aString))

aString .rjust(width)

Winter 2011 CISC101 - Whittaker 22

aString .rpartition(str)

aString .rstrip()

aString .split(str =“ “, num=aString .count(str))

aString .splitlines(num=aString .count(‘\n’))

aString .startswith(obj , beg=0, end=len(aString))

aString .strip()

aString .swapcase ()

Slides courtesy of Dr. Alan McLeod

aString .swapcase ()

aString .title()

aString .translate(str , del =““)

aString .upper()

aString .zfill(width)

Winter 2011 CISC101 - Whittaker 23

String Methods - Cont.

• Each method returns something

• None of them alter the aString object
– Strings are immutable!

• Categorize by return value:
– boolean (True or False)

Slides courtesy of Dr. Alan McLeod

– boolean (True or False)

– integer
– another string
– a list or tuple of strings

Winter 2011 CISC101 - Whittaker 24

Boolean Returns

aString .endswith(obj , beg=0, end=len(aString))

– Returns True if aString has obj at the end of the
string or False otherwise

– obj is usually a string, but can be a tuple of strings
• Returns True if any one of the strings match

– You have the option of limiting the search to a portion

Slides courtesy of Dr. Alan McLeod

– You have the option of limiting the search to a portion
of aString

aString .startswith(obj , beg=0, end=len(aString))

– Just like endswith(…) , but looks at the start of
aString instead

Winter 2011 CISC101 - Whittaker 25

Boolean Returns - the “is” Ones

aString .isalnum()

– Returns True if all of the characters in aString are
alphanumeric (letters and numbers only), False
otherwise

aString .isalpha () True if all alphabetic (letters only)

Slides courtesy of Dr. Alan McLeod

aString .isalpha () True if all alphabetic (letters only)
aString .isdigit() True if all digits (numbers only)
aString .islower() True if all letters are lowercase
aString .isspace() True if only whitespace(tabs,etc.)
aString .istitle() True if “titlecased”
aString .isupper() True if letters are all uppercase

Winter 2011 CISC101 - Whittaker 26

Aside - Titlecase

• What is titlecase?
– All words in the string must start with a capital letter and

all other letters are lower case

aString .title()

Slides courtesy of Dr. Alan McLeod

– Returns a copy of aString in titlecase

Winter 2011 CISC101 - Whittaker 27

Integer Returns

aString .count(str , beg=0, end=len(aString))

– Returns a count of how many times str occurs in
aString, or a substring of aString as specified by
beg and end

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 28

Integer Returns - Cont.

aString .find(str , beg=0, end=len(aString))

aString .index(str , beg=0, end=len(aString))

– Returns the location of the first occurrence of str in
aString

– Starts the search from the beginning of the string, or
searches a substring specified by beg and end

Slides courtesy of Dr. Alan McLeod

searches a substring specified by beg and end
– find(…) returns -1 if not found, index(…) raises an

exception if not found

aString .rfind(str , beg=0, end=len(aString))

aString .rindex(str , beg=0, end=len(aString))

– Same as above but searches aString from the end

Winter 2011 CISC101 - Whittaker 29

String Returns

aString .capitalize()

– Returns a string that is the same as aString except
the first letter is capitalized

aString .lower()

– Returns a string that has all the upper case letters in

Slides courtesy of Dr. Alan McLeod

– Returns a string that has all the upper case letters in
aString converted to lower case

aString .swapcase()

– Returns a string with the case of all letters in aString
inverted

Winter 2011 CISC101 - Whittaker 30

String Returns - Cont.

aString .upper()

– Returns a string with all lower case letters in aString
switched to uppercase

aString .center(width)

– Returns a string with spaces added to aString to

Slides courtesy of Dr. Alan McLeod

– Returns a string with spaces added to aString to
centre it in a column of size width

aString .ljust(width)

– Returns a string with spaces added to aString to left
justify it in a column of size width

Winter 2011 CISC101 - Whittaker 31

String Returns - Cont.

aString .rjust(width)

– Returns a string with spaces added to aString to right
justify it in a column of size width

aString .expandtabs(tabsize =8)

– Returns a version of aString that has all the tab

Slides courtesy of Dr. Alan McLeod

– Returns a version of aString that has all the tab
characters converted to spaces

• The default is 8 spaces per tab

aString .join(seq)

– Joins all string representations of the elements in the
list seq together using aString as the separator

Winter 2011 CISC101 - Whittaker 32

String Returns - Cont.

aString .lstrip()

– Removes all leading whitespace (tabs, spaces,
linefeeds, etc.) in aString

aString .rstrip()

– Removes all trailing whitespace in aString

Slides courtesy of Dr. Alan McLeod

– Removes all trailing whitespace in aString

aString .strip()

– Removes all leading and trailing whitespace in
aString

Winter 2011 CISC101 - Whittaker 33

String Returns - Cont.

aString .replace(str1 , str2 ,
num=aString .count(str1))

– Replaces all (or num) occurrences of str1 in aString
with str2

aString .format (args)

Slides courtesy of Dr. Alan McLeod

aString .format (args)

– We’ve used this one already
– The supplied arguments are formatted according to the

“replacement fields” contained in the string itself

Winter 2011 CISC101 - Whittaker 34

Tuple or List Returns

aString .partition(str)

– Carries out a find(…) and then splits aString into a
tuple of three strings - the stuff before str, str itself
and all the stuff after str

aString .rpartition (str)

Slides courtesy of Dr. Alan McLeod

aString .rpartition (str)

– The same as partition(…) , but it searches from the
end instead

Winter 2011 CISC101 - Whittaker 35

Tuple or List Returns - Cont.

aString .split(str =“ “, num=aString .count(str))

– Returns a list of strings parsed out of aString using
str as a delimiter

– num can specify a maximum size to the list
– If str is not supplied, a strip(…) is applied and then

whitespace is used as a delimiter

Slides courtesy of Dr. Alan McLeod

whitespace is used as a delimiter

aString .splitlines(num=aString .count(‘\n’))

– Splits aString and returns a list using the newline
character as a delimiter

– All newline characters are removed

Winter 2011 CISC101 - Whittaker 36

Demo: String Methods

• Start with the tuple or list returns methods

• Looks at how you can analyze larger amounts of
text

Slides courtesy of Dr. Alan McLeod

• Demo: StringMethods.py

Winter 2011 CISC101 - Whittaker 37

File I/O

• Files provide a convenient way to store and re-
store to memory larger amounts of data

• Use a data structure like a list to store the data in
memory

• Three kinds of file I/O

Slides courtesy of Dr. Alan McLeod

• Three kinds of file I/O
– Text
– Binary
– Random access

• We will stick with text I/O in this course

• Text files can be read by Notepad, for example

Winter 2011 CISC101 - Whittaker 38

Text File Output

file_variable = open(filename , mode)

• filename is the name of a file
– Must be in the same folder as your program
– It is a string

Slides courtesy of Dr. Alan McLeod

• mode is also a string
– ‘r’ for reading only
– ‘w’ for writing only
– ‘a’ for appending to a file

• The default mode is ‘r’

Winter 2011 CISC101 - Whittaker 39

Aside - Other File Modes

• r+ - read and write (same as w+ or a+)
• rb - binary read
• wb - binary write
• ab - binary append
• rb + - binary read and write (same as wb+ and

Slides courtesy of Dr. Alan McLeod

• rb + - binary read and write (same as wb+ and
ab+)

• If you are having problems with line terminators,
you can also try rU
– Read with “universal newline support”

Winter 2011 CISC101 - Whittaker 40

Text File Output - Cont.

• If you open an existing file for writing using mode
‘w’ , the old file will be overwritten with a new file
– All the old contents will be lost

• If you want to add to an existing file without

Slides courtesy of Dr. Alan McLeod

erasing the old contents, use the ‘a’ mode
– ‘a’ for append

• If you do not provide a path, the file is created in
the same folder as your program

Winter 2011 CISC101 - Whittaker 41

Text File Output - Cont.

• To write information to a file, use the write()
method

file_variable .write(a_string)

• The write() method does not add a line

Slides courtesy of Dr. Alan McLeod

• The write() method does not add a line
terminator to the end of the string
– If you want to write a line, and have the next output go

to the next line, you need something like this

file_variable .write(a_string + ‘\n’)

Winter 2011 CISC101 - Whittaker 42

Text File Output - Cont.

• Once you are finished writing to the file don’t
forget to close the file using

file_variable .close()

• If you don’t do this, you run the risk of leaving a

Slides courtesy of Dr. Alan McLeod

• If you don’t do this, you run the risk of leaving a
corrupted file on your hard disk!

Winter 2011 CISC101 - Whittaker 43

Sequential File Access

• Text file I/O uses sequential access
• Think of having a little “pointer” in the file marking

the end of what you have read
• As you read (or write), the pointer moves ahead
• The pointer cannot move backwards

Slides courtesy of Dr. Alan McLeod

• The pointer cannot move backwards

• The only way to re-read something is to close the
file and open it again
– This moves the “pointer” back to the beginning

start end

Winter 2011 CISC101 - Whittaker 44

vs. Random File Access

• This can be used only with binary files

• Seeks a certain byte location in the file
– You must know the exact structure of the file to do this

Slides courtesy of Dr. Alan McLeod

• Read or write data from this location

• Seek again …

Winter 2011 CISC101 - Whittaker 45

Text File Input

• Use the open(…) method as shown on slide 35

• Use the readline() method to read a line up to
and including a linefeed character
– This method returns a string

Slides courtesy of Dr. Alan McLeod

• You might wish to use something like rstrip()
on the string to remove the linefeed, and any
other whitespace at the end of the string

Winter 2011 CISC101 - Whittaker 46

Text File Input - Cont.

• There are other file reading methods

• read()

– Reads the entire file and returns a single string

Slides courtesy of Dr. Alan McLeod

• readlines()

– Reads the entire file and returns a list of lines of text

Winter 2011 CISC101 - Whittaker 47

Text File Input - Cont.

• Invoke the close() method when you are done
reading

• A for loop can simplify input …

Slides courtesy of Dr. Alan McLeod

• Demo: TextFileIO.py

Winter 2011 CISC101 - Whittaker 48

